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Abstract

The interaction of an edge dislocation with a thin-®lm-covered crack under mode I and/or mode II loadings is
studied in order to investigate the e�ects of a passive ®lm on stress-corrosion cracking. The passive ®lm is modeled

to be an ellipse in which there is a crack. The ellipse is embedded in an in®nite medium under remote loadings.
Superposition, Cauchy integration, specially constructed functions, and series expansion technique are used to do as
much analytical calculation as possible of the stress ®elds in the ®lm and the substrate. The image force and the

shielding e�ect are calculated and the critical stress intensity factor for dislocation emission from the ®lm-covered
crack tip is investigated on the basis of the Rice±Thomson model. The results show that the slip component of the
image force of an edge dislocation in the ®lm increases with increasing the ratio of the ®lm shear modulus over the

substrate shear modulus, as does the shielding e�ect of the dislocation on the crack tip. Since the presence of the
thin ®lm changes both the image force of the dislocation and the local stress ®eld due to the applied loads, the
nominally critical stress intensity factor for dislocation emission is related to the thin ®lm thickness, the properties
of the ®lm and the loading conditions. For a given loading mode and crack length, there is a critical value of the

®lm thickness at which the ®lm does not in¯uence the dislocation emission. When the ®lm thickness is smaller than
the critical one, a harder thin ®lm makes the dislocation emission easier and a softer ®lm makes the dislocation
emission more di�cult. The opposite is also true if the ®lm thickness is larger than the critical value for a given

crack length. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stress-corrosion cracking (SCC), which occurs under the resultant action of mechanical loads and
corrosive environments, can cause catastrophic failures of engineering structures and components.
Although all SCC failure is macroscopically brittle, localized plastic deformation has been observed at
the crack tip, which means that the dislocation activities at the crack tip must be involved during SCC.
In order to understand SCC, considerable research has been addressed (e.g. Parkins, 1992; Jones and
Ricker, 1992; Sieradzki, 1982; Kaufman and Fink, 1988; Sieradzki and Newman, 1985, 1987; Zhang and
Qian, 1996a, 1996b) and many mechanisms have been proposed (Jones and Ricker, 1992; Flanagan et
al., 1993; Magnin, 1996), including the corrosion tunnel model, adsorption-enhanced plasticity, ®lm-
induced cleavage, adsorption-induced brittle fracture and hydrogen embrittlement. Recently, Magnin
(1996) published a book on corrosion-deformation interactions. In this book, he reviewed experimental
evidence and associated modeling of corrosion-deformation interactions occurring during SCC.

During SCC, especially in a metal/environment system, a ®lm can be formed. The ®lm may be a
passive layer, tarnished ®lm, or a dealloyed layer. The thin ®lm formed is quite di�erent from its
substrate in chemical, structural and mechanical properties. Thus, Sieradzki (1982) and Sieradzki and
Newman (1985, 1987) proposed a mechanism of ®lm-induced cleavage for SCC based on dislocation-
crack interactions. The dislocation emission from a crack tip may become di�cult if a thin ®lm with the
thickness of several 100 nm is formed around the crack tip owing to an anodic process. Also, a thin
ductile ®lm may initiate cleavage if the interface between the ®lm and the substrate is coherent and
appropriate mismatch strains exist. The model of ®lm-induced cleavage has successfully described their
experimental observations (Sieradzki, 1982; Sieradzki and Newman, 1985, 1987). In order to put the
model of ®lm-induced cleavage within a more theoretical context, Zhang and Qian (1996a, 1996b)
modeled SCC with a thin-®lm-covered crack under anti-plane deformation by studying analytically, the
interaction between a screw dislocation and the thin-®lm-covered crack. Their results (Zhang and Qian,
1996a, 1996b) indicate that the crack stress ®eld due to the applied load is enhanced by a harder ®lm or
abated by a softer ®lm. If the ®lm thickness is much smaller than the crack length, then the stress
intensity factor can be simply expressed as the product of the nominal stress intensity factor and the
shear modulus ratio. Both the critical stress intensity factors for the screw dislocation emission from the
crack tip and screw dislocation dipole emission from the interface are greatly in¯uenced by the ®lm
sti�ness and thickness. The advantage of analyzing a ®lm-covered mode III crack lies in the fact that the
solution is analytic and given in series (Zhang and Qian, 1996a, 1996b). However, most SCC occurs
under mode I loadings. In order to have a better understanding of SCC, the present work, following the
previous approach (Zhang and Qian, 1996a, 1996b), studies the e�ects of thin ®lm formation at a crack
tip on fracture under mode I and/or mode II loadings.

From a mechanics point-of-view, the thin-®lm-covered crack embedded in an in®nite medium is also a
topic of considerable interest because it is equivalent to a crack in an inclusion. In general, it is very
di�cult to obtain a closed-form solution for the stress and displacement ®elds, even in a two-
dimensional analysis. Many researches have studied the inclusion problems (Eshelby, 1957; Chen, 1967;
Erdogan et al., 1974; Yang and Chou, 1976; Mura, 1982, 1988; Patton and Santare, 1990; Chen, 1995;
Dundurs and Mura, 1964; Dundurs and Sedeckyj, 1965; Gong, 1994; Qaissaunee and Santare, 1995;
Santare, 1995; Santare and Keer, 1986; Stagni and Lizzio, 1983; Tong and Zhang, 1996; Warren, 1983;
Yen et al., 1995; Wu and Chen, 1990; Anlas and Santare, 1993; Yen and Hwu, 1994; Honein et al.,
1994). Interested readers may ®rst consult with the book and paper by Mura (1982, 1988), which are
overviews of the methodologies and solutions to inclusion problems. Here, we brie¯y introduce the
works that are more relevant to the present topic. Wu and Chen (1990) studied a crack in confocal
elliptic inhomogeneity embedded in an in®nite medium under anti-plane and/or in-plane loadings. They
found that the solution for the anti-plane problem is exact and can serve as a quantitative indication of
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the behaviors of the solutions to the in-plane problems that cannot be solved exactly. As mentioned
above, the thin-®lm-covered crack has been studied under mode III loadings and those results will be
used here for comparison. Anlas and Santare (1993) studied the problem of an arbitrarily oriented crack
inside an elliptical inclusion. They used the complex potentials for an edge dislocation inside an elastic
elliptical inclusion (Qaissaunee, 1992) as the Green's function and expressed the solution in terms of
singular integral equations that have to be solved numerically.

Taking advantage of the above mentioned work, the present work studies the interaction of an edge
dislocation with a thin-®lm-covered crack. For simplicity, the whole system studied here is assumed to
be initially stress-free. Actually, residual stresses may be induced during SCC, which will be considered
for future research. Muskhelishvili's complex potentials (1954), superposition, analytic continuation,
Cauchy integration and Laurent series are deliberately combined to calculate the stress ®elds in both the
®lm and the substrate. The new methodology is able to produce the best possible analytical solutions.
Consequently, the e�ects of the ®lm sti�ness and thickness on the crack tip stress ®eld due to applied
loads, on the image force, on the shielding e�ect, and on the dislocation emission from the ®lm-covered
crack tip are studied in order to explore the role of the thin ®lm formation during SCC.

2. Analysis

In order to model a crack covered by a thin ®lm, we assume that the ®lm has an elliptical shape of
x 2
1 =a

2�x 2
2 =h

2� 1: Inside the ®lm, there is a crack extending from ÿc to c along the x1 axis with c2 �
a2 ÿ h2: The crack and the ®lm are embedded in an in®nite medium under remote loadings, as shown in
Fig. 1(a). The conformal mapping function

z � o�z� � R

�
z� m

z

�
, �1�

where z � x1 � ix2, z � Z� ix, R � �a� h�=2 and m � �aÿ h�=�a� h�, maps the ellipse in the z-plane
into a unit circle in the z-plane and the crack �ÿc, c� in the z-plane into a circle with a radius of

����
m
p

in
the z-plane, as shown in Fig. 1(b). The inverse mapping function of (1) is

z � z�
���������������
z2 ÿ c2
p

2R
�2�

Thus, the problem in the z-plane can be solved in the z-plane using the conformal mapping functions.
For in-plane strain, the stress and displacement ®elds can be expressed by two complex potentials

s11 � s22 � 2

h
f 0�z� � f 0�z�

i
,

s22 ÿ s11 � 2is12 � 2
�
�zf 00�z� � c 0�z��,

u�z� � u1 � iu2 � 1

2m

h
kf�z� ÿ zf 0�z� ÿ c�z�

i
, �3�

where the prime denotes the di�erentiation with respect to z, the overbar denotes complex conjugate,
k � 3ÿ 4n, and m and n are, respectively, the shear modulus and Poisson ratio of the material.

The traction-free boundary condition along the crack faces requires
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f��t� � o�t�
o 0�t�f

� 0�t� � c��t� � 0 at t � ����
m
p

eiy, �4�

where the superscript `�' denotes the ®lm. From the boundary conditions of continuity of displacement
and traction along the interface, i.e., along the unit circle, the complex potentials for the substrate can
be expressed in terms of the complex potentials for the thin ®lm.

f�t� � a1f
��t� � a2

�
t 2 �m

t�1ÿmt2�f
� 0�t� � c��t�

�
at t � eiy �5�

Fig. 1. (a) Schematic illustration of a thin-®lm-covered crack under remote applied loads in the z-plane. (b) Mapping the thin-®lm-

covered crack into a circular ring in the z plane.
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t2 �m

t�1ÿmt2 �f
0�t� � c�t� � a3f

��t� � a4

�
t2 �m

t�1ÿmt2�f
� 0�t� � c��t�

�
, at t � eiy �6�

where

G � m�=m, a1 � k� � G
G�k� 1� , a2 � Gÿ 1

G�k� 1� , a3 � Gkÿ k�

G�k� 1� , and a4 � Gk� 1

G�k� 1� : �7�

The detailed derivations of the stress ®elds produced by applied remote loads and an edge dislocation
within the ®lm are respectively given in Appendices A and B.

3. Results and discussion

3.1. The stress ®elds due to applied remote loads

Appendix A describes the detailed analysis of the stress ®elds induced by applied remote loads
including s111, s

1
12 and s122: However, the following discussion will not consider the remote load of s111

for simplicity, i.e., s111 � 0 is implicitly adopted as follows. In this study, the length is scaled in units of
the magnitude of the Burgers vector b � jbj � jb1� ib2j �

�����
b2
1

q
� b2

2 , and b1 and b2 are, respectively, the
components of the Burgers vector along the x1 and x2 axes. Fig. 2(a) and (b) show the normalized
stresses in front of the crack tip as a function of the shear modulus ratio, G, wherein the crack length c
= 19,900b, the ®lm thickness a±c along the x1 axis is 100b, the locations, at which the stresses are
calculated, are 50b in the ®lm and 150b in the substrate from the crack tip, respectively. As can be seen
in Fig. 2(a), the normalized stresses increase monotonically from 8.5, 9.0 and 7.5 to 18.0, 18.0 and 25.0,
respectively, for s11=s122, s22=s

1
22 and s12=s112 when the shear modulus ratio increases from 0.5 to 2.0.

This phenomena for the inplane deformation is similar to that for the anti-plane deformation (Zhang
and Qian, 1996a). A softer ®lm reduces the stress ®eld in the ®lm, while a harder ®lm enhances it. The
stress behavior in the substrate di�ers from that in the ®lm. Fig. 2(b) shows that when the shear
modulus ratio increases from 0.5 to 2.0, the normalized stresses s11=s122 and s12=s112 increase
monotonically from 6.0 and 6.2 to 8 and 10.5, respectively, while s22=s122 decreases monotonically from
10.2 to 6.2. The reason that s11=s122 and s12=s112 behave in the substrate in the same way as that in the
®lm lies in the fact that these stress components are continuous at the interface along the x1 axis. The
stress component s22 jumps when crossing the interface, as shown in Fig. 3, where the s22 distribution
along the x1 axis is given for two di�erent ratios of shear moduli. When crossing the interface from the
®lm to the substrate, the normalized stress s22=s122 jumps up from 9 to 14 for a softer ®lm with G � 0:5,
while it jumps down from 8 to 7 for a harder ®lm with G � 2: Clearly, s22 is discontinuous across the
interface and the magnitude of the jump depends on the ratio of shear moduli. The discontinuity of the
stress ®elds across the interface between the ®lm and the substrate could be an important in¯uence
factor on SCC in a way of a�ecting, for example, the dislocation activities in front of the crack tip.
Figs. 4(a)±(d) illustrate the e�ects of the Poisson ratio of the thin ®lm on the stress ®elds in both ®lm
and substrate for G � 0:5 and 2, where the Poisson ratio of the substrate is taken to be 0.3. For the
stress ®eld in the ®lm, as shown in Fig. 4(a) and (b), when the Poisson ratio of the ®lm increases from
0.25 to 0.45, the normalized stresses s11=s122, s22=s

1
22 and s12=s112 increase, respectively, from 7.8, 8.7 and

7.2 to 11.4, 12.8 and 9.2 for G � 0:5, while increase, respectively, from 17.7, 17.7 and 23.6 to 21.6, 20.8
and 29.7 for G � 2: Therefore, a large Poisson ratio of the ®lm enhances all stress components in the
®lm, regardless of the ratio of shear moduli. Fig. 4(c) and (d) demonstrate the stress ®eld in the
substrate as a function of the Poisson ratio of the ®lm. For G � 0:5, the normalized stresses s11=s122 and
s12=s112 increase, respectively, from 5.7 and 6.1 to 7.2 and 7.0, while s22=s122 decreases from 10.5 to 8.7,
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Fig. 2. (a) The variation of the normalized stresses in the ®lm, at a point 50b away from the crack tip along the x 1, axis, with the

shear modulus ratio G: (b) The variation of the normalized stresses in the substrate, at a point 50b away from the interface along

the x 1, axis, with the shear modulus ratio G:

Fig. 3. Distribution of the normalized stress s22=s122 in front of the crack tip along the x 1 axis for G � 0:5 and 2.
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as the Poisson ratio of the ®lm increases from 0.25 to 0.45. Similar behaviors of the stress components
are found for G � 2: When the Poisson ratio of the ®lm increases from 0.25 to 0.45, the normalized
stresses s11=s122 and s12=s112 increase respectively, from 7.8 and 10.2 to 8.6 and 11.6, while s22=s122
decreases from 6.5 to 5.0. These facts indicate that a large Poisson ratio of the ®lm leads to high stresses
s11=s122 and s12=s112 and a low stress s22=s122 in the substrate, in spite of the ratio of shear moduli.

The stress intensity factors at the right crack tip are de®ned as

KI � iKII � lim
z4 c

�������������������
2p�zÿ c�

p
�s22 � is12 �: �8�

Substituting s22 and s12 into Eq. (8) and completing the limit lead to

KI � iKII �
�����
pc
p

 
c1 � c1 � c2 �

X1
n�ÿ1

Cn � 2Cn

2R
nm

nÿ1
2

!
, �9�

Fig. 4. (a) The variation of the normalized stresses in the ®lm, at a point 50b away from the crack tip along the x 1 axis, with the

Poisson ratio of the ®lm for G � 0:5: (b) The variation of the normalized stresses in the ®lm, at a point 50b away from the crack

tip along the x 1 axis, with the Poisson ratio of the ®lm for G � 2: (c) The variation of the normalized stresses in the substrate, at a

point 50b away from the interface along the x 1 axis, with the Poisson ratio of the ®lm for G � 0:5: (d) The variation of the normal-

ized stresses in the substrate, at a point 50b away from the interface along the x 1 axis, with the Poisson ratio of the ®lm for G � 2:
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where c1, c2 and Cn are parameters evaluated in Appendix A, c1 and c2 are given in Eq. (A13) and Cn

has to be numerically calculated from Eqs. (A18) and (A19). Fig. 5 shows the normalized stress intensity
factor as a function of the ®lm thickness a±c for G � 0:5 and 2, where,

K 0
I �

�����
pc
p

s122, �10�

K 0
II �

�����
pc
p

s112 �11�
are the nominal stress intensity factors without any ®lm. As in the analytically studied case for the mode
III crack (Zhang and Qian, 1996a), the normalized stress intensity factors decrease with increasing the
®lm thickness if the ®lm is harder than the substrate, as shown in Fig. 5 for G � 2: However, if the ®lm
is softer than the substrate, the normalized stress intensity factors increase with increasing the ®lm
thickness, as also shown in Fig. 5 for G � 0:5: It is also seen that the e�ect of the ®lm thickness on the
normalized stress intensity factors is stronger for mode II loading than that for mode I loading. KI=K

0
I

slightly increases from 1.40 to 1.42 for G � 2 and decreases from 0.64 to 0.63 for G � 0:5, as the ®lm
thickness decreases from 100 to 5b This means that KI=K

0
I is insensitive to the ®lm thickness in the

range of a±c = 5±100b. On the other hand, when the ®lm thickness decreases from 100 to 5b, KII=K
0
II

increases from 1.78 to 2.0 for G � 2 and decreases from 0.53 to 0.50 for G � 0:5: The behavior of
KII=K

0
II is similar to that of KIII=K

0
III i.e., the stress intensity factor is proportional to the ratio of shear

moduli when the ®lm thickness is very small. Fig. 6 shows the normalized stress intensity factors as
functions of the ratio of shear moduli, where the ®lm thickness remains at 100b. When the ratio of shear
moduli increases from 0.5 to 2, KI=K

0
I and KII=K

0
II increase from 0.64 and 0.54 to 1.40 and 1.78,

respectively. Clearly, a large G corresponds to high normalized stress intensity factors and this in¯uence
on KII is also stronger than that on KI: Fig. 7(a) and (b) are plots of the normalized stress intensity
factor as a function of the Poisson ratio of the ®lm, respectively, for G � 0:5 and 2, where the Poisson
ratio of the substrate is taken to be 0.3 or 0.45. Similar to the e�ects of the Poisson ratio of the ®lm on
the stress ®eld in the ®lm, a large Poisson ratio of the ®lm yields high stress intensity factors regardless
of the ratio of shear moduli, as shown in Fig. 7(a) and (b).

3.2. Image force and shielding e�ects of an edge dislocation in the ®lm

Appendix B shows the detailed derivation of the complex potentials produced by an edge dislocation

Fig. 5. The normalized stress intensity factors as a function of ®lm thickness for G � 0:5 and 2.
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Fig. 6. The normalized stress intensity factors as a function of the shear modulus ratio G:

Fig. 7. The normalized stress intensity factors as a function of the Poisson ratio of the ®lm, (a) for G � 0:5 and (b) for G � 2:
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located inside the ®lm. The stress ®eld near a ®nite length crack produced by a dislocation is related to
dislocation sources (Zhang and Li, 1991). The present work, as stated in Appendix B, considers only
dislocations emitted from the crack. Using Eq. (3), the stress ®elds are calculated by these complex
potentials derived in Appendix B. Fig. 8 shows the stress distribution of s12 along the x1 axis for G � 2,
1 and 0.5, where the crack length c = 19,900b, the ®lm thickness a±c = 100b, and the dislocation is
located 25b away from the crack tip. It is seen that higher the ratio of the shear moduli, i.e., higher the
sti�ness of the ®lm, the higher the stress ®eld within the ®lm.

The force exerted on a unit length of dislocation is given by the Peach±Koehler formula

F � F1 � iF2 � �s12b1 � s22b2� ÿ i�s11b1 � s12b2�: �12�
The image force of the dislocation can be calculated from the stress ®eld due to its images by letting z �
zd�z � zd�: The image force exerted on a dislocation usually has slip and climb components. The present
work studies only the slip component of the image force. For convenience, we translate the origin to the
right crack tip. The dislocation location is then expressed as zd � reiy � c, where r is the distance
between the right crack tip and the dislocation and y is the polar angle. The present work assumes also
that the Burgers vector of the dislocation has the same polar angle as the slip plane. As an example,
Fig. 9 demonstrates the slip image force as a function of r for di�erent slip planes under a given crack
length of c = 19,900b, a ®lm thickness of a±c = 100b and a ratio of shear moduli G � 0:5: It is seen
that the inclination of slip planes has a slight in¯uence on the slip image force especially when the
dislocation is near the crack tip. This is because the slip image force of a dislocation is independent of
the inclination of slip planes for a semi-in®nite length crack without being covered by any ®lm (Rice
and Thomson, 1974; Asaro, 1975). As discussed by Zhang and Qian (1996a), both the crack and the
interface produce image forces on a dislocation in the ®lm. When the dislocation is very close to the
crack tip, the image force due to the crack dominates, while the interface becomes the major contributor
to the image force when the dislocation is far from the crack tip and close to the interface. In the latter
case, the slip image force depends on the angle of the slip plane, as shown in Fig. 9, and the larger the
angle, the smaller the slip image force in magnitude. Note that the minus sign indicates the image force
towards to the crack tip, and thereafter ``a large image force'' will be used to indicate that the image
force has a large value of magnitude. Under a pure mode I loading, the maximum shear stress occurs at
the slip plane with a polar angle of 708. This implies that it is relatively easy for the crack to emit an
edge dislocation along the 708-slip plane. Therefore, the 708-slip plane will be discussed more in the

Fig. 8. Stress distribution along the crack plane for three ratios of shear moduli, where the edge dislocation is located 25b in front

of the crack tip in the crack plane.

T.-Y. Zhang et al. / International Journal of Solids and Structures 37 (2000) 5465±54925474



Fig. 9. The slip image force of an edge dislocation in di�erent slip planes as a function of the distance from the dislocation to the

crack tip.

Fig. 10. The slip image force of an edge dislocation in the 708 slip plane as a function of: (a) the shear modulus ratio G and (b) the

Poisson ratio of the ®lm.
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following. Fig. 10(a) illustrates the slip image force as a function of the ratio of shear moduli for the
708-slip plane, where the dislocation is located 9b away from the right crack tip. The slip image force is
directly proportional to the ratio of shear moduli G, as shown in Fig. 10(a), indicating that a hard ®lm
corresponds to a high image force. Fig. 10(b) demonstrates the variation of the slip image force with the
Poisson ratio of the ®lm for G � 0:5 and 2, where the Poisson ratio of the substrate is taken to be 0.3.
Regardless of the value of the shear modulus ratio, the slip image force monotonically increases with
increasing the Poisson ratio of the ®lm.

Similar to applied remote loads, an edge dislocation also produces a stress singularity at each crack
tip. Using the stress ®eld produced by the edge dislocation and the de®nition of stress intensity factors
of Eq. (11), we calculate the stress intensity factors at the right crack tip induced by the edge dislocation
and express them in Eq. (B18) in Appendix B. Fig. 11(a) and (b) respectively show the mode I and
mode II stress intensity factors as a function of r for di�erent slip planes where c = 19,900b, a±c =
100b and G � 0:5: Unlike the slip image force plotted in Fig. 9, the stress intensity factors vary
considerably with the slip plane because the Burgers vector of the dislocation changes from one slip
plane to another. The dislocation on the 708- slip plane produces the largest shielding from mode I
loading and the smallest shielding from mode II loading, while the shielding e�ect of the dislocation on
the 08-slip plane is the smallest from mode I loading and the largest from mode II loading. These results

Fig. 11. The stress intensity factor induced by an edge dislocation in di�erent slip planes as a function of the distance from the dis-

location to the crack tip. (a) KI, d and (b) KII, d:
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are consistent with the case for a dislocation emitted from a crack tip in a homogeneous medium
(Zhang and Li, 1991; Qian and Li, 1996a, 1996b). The in¯uences of the shear modulus ratio and the
Poisson ratio on the dislocation shielding are similar to those on the slip image force of the dislocation.
The stress intensity factors produced by the dislocation are proportional to the ratio of shear moduli G,
as shown in Fig. 12(a), and increase monotonically with increasing the Poisson ratio of the ®lm
(Fig. 12(b)).

3.3. Dislocation emission from the crack tip

In order to study how a hard or soft passive ®lm can in¯uence dislocation emission from the crack
tip, we calculate the critical stress intensity factor for an edge dislocation emission from the crack tip.
The critical stress intensity factor in the two-dimensional Rice±Thomson model is calculated from the
balance between the driving force and the image force at a certain distance from the crack tip (Rice and
Thomson, 1974; Lin and Thomson, 1986). This distance is usually taken to be the size of the dislocation
core cut-o�, r0: The algebraic equation to determine the critical stress intensity factor for dislocation
emission is then given by

F y
crack�r0� � F y

slip�r0� � 0, �13�

where F y
slip�r0� denotes the slip image force and F y

Crack�r0� is the slip driving force that can be expressed

Fig. 12. The stress intensity factors induced by an edge dislocation in the 708 slip plane as a function of: (a) the shear modulus

ratio G and (b) the Poisson ratio of the ®lm.
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in terms of the mode I and mode II intensity factors. Note that both the slip image force and the slip
driving force are related to the polar angle. In this study, we discuss two special cases. A pure mode II
loading drives the dislocation emission along the crack plane �y � 08� and a pure mode I loading may
emit dislocation along the 708-slip plane. The two slip planes are the most favorable planes in studying
dislocation emission from a crack tip in an isotropically homogeneous material (Zhang and Li, 1991;
Qian and Li, 1996a, 1996b). Thus, the critical mode II or mode I stress intensity factor for dislocation
emission can be explicitly written as

KII, e � ÿ
���������
2pr0
p

b
Y�y � 08�F y�08

slip �r0�, for mode II emission, �14a�

KI, e � ÿ
���������
2pr0
p

b
Y�y � 708�F y�708

slip �r0�, for mode I emission, �14b�

where Y is a function of y and becomes unity for y � 08: Since the thin-®lm may change the stress
intensity factors, it is convenient to convert the critical stress intensity factors calculated by Eqs. (14a)
and (14b) into the nominal ones:

K 0
Il, e � ÿ

i2s112
���������
2pr0
p

F y�08
slip �r0�

b

 
c2 ÿ c2 �

X1
n�ÿ1

Cn±Cn

2R
nm

nÿ1
2

! , for mode II emission, �15a�

K 0
I, e � ÿ

2s122
���������
2pr0
p

Y�y � 708�F y�708
slip �r0�

b

 
2c1 � 2c1 � c2 � c2 �

X1
n�ÿ1

3Cn � 3Cn

2R
nm

nÿ1
2

! , for mode I emission, �15b�

It should be pointed out that in calculating these parameters of c1, c2 and Cn to evaluate the nominally
critical stress intensity factors for dislocation emission, s122 should be taken as zero for the mode II
emission and as should s112 for the mode I emission. Furthermore, the cut-o� of dislocation core in the
present study is taken to be r0 � 1 b:

Fig. 13(a) and (b) show the critical stress intensity factors, KI, e and KII, e, respectively, for dislocation
emission under mode I and mode II loadings, as functions of the ®lm thickness, while Fig. 14(a) and (b)
indicate the corresponding nominal factors. Two crack lengths, c = 1000b and c = 1,000,000b, and two
ratios of shear moduli, G � 2 and 0.5, are employed in plotting Figs. 13(a) and 14(a). As can be seen in
Figs. 13(a) and 14(a), all the critical stress intensity factors and the nominal ones increase (or decrease)
with increasing the ®lm thickness for G � 2 (or G � 0:5� and behave the same for both mode I and
mode II emission. This phenomenon was also found for crew dislocation emission from a thin-®lm-
covered mode III crack (Zhang and Qian, 1996a). Fig. 13(a) and (b) show that the two crack lengths, c
= 1000b and c = 1,000,000b, yield almost the same critical stress intensity factors in terms of the elastic
constants of the substrate, i.e., in units of m

���
b
p
=� ������2p
p �1ÿ n��, when the ®lm thickness is larger than 10b

This means that the critical stress intensity factors are insensitive to the crack length when the ®lm
thickness is larger than 10b. If the ®lm thickness is smaller than 10b, however, the critical stress intensity
factors vary with the crack length, as shown in Fig. 13(a) and (b). It is the nominal stress intensity
factor that is measurable, therefore, focus will be put on the nominally critical stress intensity factors for
dislocation emission.

Fig. 14(a) and (b) illustrate that the nominally critical stress intensity factors increase with the ®lm
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thickness for G � 2, while decreasing with the ®lm thickness for G � 0:5: The variation of the nominally
critical stress intensity factors with the ®lm thickness is greatly a�ected by the crack length. For G � 2,
the nominally critical stress intensity factors for either mode I or mode II emission are higher for the
short crack than those for the long crack, and the opposite is also true for G � 0:5: For both mode I
and mode II emission, the nominally critical stress intensity factors are, respectively, larger (or smaller)
than those in a homogeneous medium ®lm for G � 2 (or G � 0:5� when the ®lm is thicker than a critical
value of about 3b for c = 1,000,000b in Fig. 14(a), or of about 5b for c = 1000b in Fig. 14(b). The
results indicate that a harder ®lm will make the dislocation emission more di�cult, while a softer ®lm
will promote dislocation emission, if the ®lm thickness is larger than the critical value. On the other
hand, a harder ®lm will facilitate dislocation emission and a softer ®lm will retard it, if the ®lm
thickness is smaller than the critical thickness. This critical ®lm thickness depends on the loading mode
and the crack length. A long crack yields a large critical ®lm thickness. For example, the critical
thickness for the mode II loading is about 5b for the crack length c = 1000b, while it is over 40b for c
= 1,000,000b, as shown in Fig. 14(b). For a given crack length, e.g. c = 1,000,000b, the critical
thickness for the mode I loading is about 3b, much smaller than that of over 40b for the mode II
loading, as indicated in Fig. 14(a) and (b). If the crack is short, e.g. c = 1000b, the critical ®lm
thickness must be smaller than 2b for the mode I loading. Since the dislocation core is taken to be 1b in

Fig. 13. The critical stress intensity factors for an edge dislocation emission from the thin-®lm-covered crack tip as a function of

the ®lm thickness. (a) For mode I emission and (b) for mode II emission.
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the present study, it will be very di�cult and meaningless to conduct the numerical calculation if a ®lm
thickness is smaller than 2b. Therefore, the critical ®lm thickness cannot be explicitly illustrated in
Fig. 14(a). However, the analytical solution is available for a pure mode III load (Zhang and Qian,
1996a), we have explored the critical thickness for the mode III emission in Appendix C. The results
show that only when the ratio of the ®lm thickness over the crack length is smaller than 10ÿ5, can the
stress intensity factor be approximately expressed as the product of the ratio of moduli and the nominal
stress intensity factor within 5% accuracy (see Appendix C). Furthermore, if one uses the approximated
stress intensity factor in calculating the nominally critical stress intensity factor for dislocation emission,
one will ®nd that a harder ®lm makes the dislocation emission easier and a softer ®lm makes it di�cult
regardless of the ®lm thickness.2 The critical ®lm thickness stems from the fact that the exact stress

Fig. 14. The nominally critical stress intensity factors for an edge dislocation emission fromthe thin-®lm-covered crack tip as a

function of the ®lm thickness, corresponding the results in Figs. 13 and 14(a) for mode I emission and Fig. 14(b) for mode II emis-

sion.

2 Fig. 7 in Zhang and Qian's work (Zhang and Qian, 1996a) was plotted using the approximated stress intensity factor.
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intensity factor decreases (or increases) with increasing the ®lm thickness for a ratio of shear moduli
being larger (or smaller) than unity.

Fig. 15(a) and (b) illustrate the critical stress intensity factors and the nominal factors for dislocation
emission, under the mode I or mode II loading, as functions of the ratio of shear moduli. Two ®lm
thicknesses, a±c = 5b and 10b, are used in plotting Fig. 15(a) and (b). All the critical stress intensity
factors for both ®lm thicknesses increase with increasing the ratio of shear moduli, as shown in
Fig. 15(a). Since both the ®lm thicknesses are larger than the critical ®lm thickness for the mode I
emission, as expected, the nominally critical stress intensity factors are enhanced by the ratio of shear
moduli for both the ®lm thicknesses. However, a±c = 5b is slightly smaller than, and a±c = 10b is
larger than, the critical ®lm thickness for the mode II emission. Fig. 15(b) shows that the nominally
critical stress intensity factors increase with increasing the ratio of shear moduli if the ®lm thickness is
larger than the critical one. The opposite is also true. If the ®lm thickness is smaller than the critical
one, the nominally critical stress intensity factors decrease with increasing the ratio of shear moduli.

Fig. 16(a) and (b) show the critical stress intensity factors and the nominal ones for dislocation
emission under the mode I or mode II loading as functions of the Poisson ratio of the ®lm, where the
Poisson ratio of the substrate is taken to be 0.3. Again, the two ®lm thicknesses, a±c = 5b and 10b are

Fig. 15. (a) The critical stress intensity factors for an edge dislocation emission from the thin-®lm-covered crack tip as a function

of the shear modulus ratio G: (b) The nominally critical stress intensity factors for an edge dislocation emission from the thin-®lm-

covered crack tip as a function of the shear modulus ratio G:
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used in plotting Fig. 16(a) and (b). As can be seen in Fig. 16(a) that all the critical stress intensity
factors increase with increasing the Poisson ratio of the ®lm regardless of the ®lm thickness. However,
Fig. 16(b) indicates that a large Poisson ratio of the ®lm makes the nominally critical stress intensity
factors increase for the mode II emission but decrease for the mode I emission.

4. Conclusions

Using the complex potentials, superposition, Cauchy integration, specially constructed functions, and
series expansion, the present work analyses the stress ®elds near a thin-®lm-covered mode I and/or mode
II crack produced by applied remote loads and an edge dislocation in the ®lm. Focus is put on the
e�ects of the ®lm thickness, the shear modulus and Poisson ratio of the thin ®lm on the stress ®elds,
and hence the stress intensity factors. The shielding e�ects, the image force of an edge dislocation, and
dislocation emission from the ®lm-covered crack tip have been investigated. The following conclusions
are drawn from the investigation:

Fig. 16. (a) The critical stress intensity factors for an edge dislocation emission from the thin-®lm-covered crack tip as a function

of the Poisson ratio of the ®lm. (b) The nominally critical stress intensity factors for an edge dislocation emission from the thin-

®lm-covered crack tip as a function of the Poisson ratio of the ®lm.
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1. A large ratio of shear moduli yields a high stress ®eld and hence both large mode I and mode II
stress intensity factors. This means that the stress ®eld in front of the crack tip due to the applied
loads are enhanced by a harder ®lm or abated by a softer ®lm.

2. A large Poisson ratio of the ®lm enhances the stress ®eld in the ®lm, resulting in large stress intensity
factors under the mode I or mode II loadings.

3. The slip component of the image force on an edge dislocation in the ®lm emitted from the crack tip
is proportional to the ratio of shear moduli. The image force is enhanced by a ®lm with relatively
high shear modulus and Poisson ratio in comparison with those of the substrate.

4. In conjugation with the image force, the shielding of the crack tip by an edge dislocation in the ®lm
is stronger when the ®lm is harder, and the opposite is also true.

5. The critical stress intensity factor for dislocation emission from the crack tip is in¯uenced by the
crack length and the ®lm sti�ness as well as the ®lm thickness. There exists a critical ®lm thickness
for a given crack length. When the ®lm is thinner than the critical thickness, a harder ®lm makes the
dislocation emission easier, while a softer ®lm makes the emission more di�cult.
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Appendix A. Sfress ®elds due to applied remote loads

Wu and Chen (1990) have established the solution of stress ®elds due to applied remote loads. In this
study, we employ a slightly di�erent approach. Using superposition, we divide the complex potentials
for the ®lm and substrate under applied-remote loadings into three parts

f��z� � f�1�z� � f�2�z� � f�3�z�,

c��z� � c�1�z� � c�2�z� � c�3�z�,

f�z� � f1�z� � f2�z� � f3�z�,

c�z� � c1�z� � c2�z� � c3�z�: �A1�
Let the ®rst part be the solutions for an elliptical inclusion without any crack under applied remote
loads and have the following forms:

f�1�z� � c1z � c1R�z�m=z�, �A2�

c�1�z� � c2z � c2R�z�m=z�, �A3�
for the ®lm; and,
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f1�z�
R
� �a1c1 � a2�c1 �mc2�

�
z�

�
ma1c1 � a2�mc1 � c2�

�
z

, �A4�

c1�z�
R
� �a4c2 �m

ÿ�a3 ÿ a2�c1 � �a4 ÿ a1�c1 ÿma2c2
��
z�

�
ma4c2 � �a3 ÿ a2�c1 � �a4 ÿ a1�c1

�
z

ÿ a2c2

ÿ
m3z2 ÿ 1

�
z
ÿ
z2 ÿm

� , �A5�

for the substrate; where c1 and c2 are constants that will be determined by the remote loads. The
traction along the crack faces produced by the ®rst part of the stress ®elds is then given by

T � s�22 ÿ is�12 � c1 � c1 � c2: �A6�
The second part of the complex potentials for the ®lm is formulated from the traction-free condition
along the crack faces. Using Eqs. (4) and (A6), we have

f�2�z�
R
� ÿmT

z
, �A7�

c�2�z�
R
� ÿm

�T

z
ÿ mT

z
z�m=z
zÿm=z

: �A8�

The second parts of the complex potentials for the substrate are analytically derived from the continuity
of displacement and traction along the interface by applying Cauchy integration to Eqs. (5) and (6).
Using Eqs. (5), (6), (A7) and (A8), and completing the integration yield

f2�z�
R
� ÿa1mT

z
� a2�m �TÿmTÿ �T�z, �A9�

c2�z�
R
� ÿa3m �Tz� 1�mz2

z2 ÿm

�
�a4 ÿ a1�mT

z
ÿ za2�m �TÿmTÿ �T�

�
ÿ a4

"
m �T

z
� mT

z
z2 �m

z2 ÿm

#
: �A10�

Note that Eqs. (A9), (A10), (A7) and (A8) cannot totally satisfy the boundary conditions of Eqs. (5)
and (6), because the values of Eqs. (A7) and (A8) at the interface are not the exact boundary values of
the complex potentials for the substrate. Doing this, however, analytically maximizes the solutions. The
remote loading conditions require

�a1 ÿ a2�c1 � a2�mÿ 1�c2 � s111 � s122
4

, �A11�

h
a4 ÿ a2m

2 ÿm�a3 ÿ a2�
i
c2 �m�a4 ÿ a1 � a2 ÿ a3�c1 � s122 ÿ s111

2
� is112: �A12�

Solving Eqs. (A11) and (A12) gives the constants c1 and c2:

c1 � P2

2P1
� i

s112
P1

,
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c2 � s111 � s122
4�mÿ 1�a2 ÿ

a1 ÿ a2
�mÿ 1�a2 c1: �A13�

where

P1 � m�a4 ÿ a1 � a2 ÿ a3� ÿ �
a1 ÿ a2�

�
a4 ÿm2a2 ÿm�a3 ÿ a2�

�
�mÿ 1�a2 ,

P2 � s122 ÿ s111 ÿ
�
a4 ÿm2a2 ÿm�a3 ÿ a2�

�
�mÿ 1�a2

s111 � s122
2

: �A14�

In order to satisfy the interface boundary conditions totally, the third parts of the complex potentials
for the substrate and for the ®lm are introduced and expressed by the following series:

f3�z� �
X0

n�ÿ1
Anz

n, c3�z� �
X0

n�ÿ1
Bnz

n, �A15�

f�3�z� �
X1

n�ÿ1
Cnz

n, �A16�

where An, Bn and Cn are constants to be determined by the boundary conditions. Hence, it follows that
no stress at in®nity are induced by the third part of the complex potentials for the substrate, the index n
in the series of f3 and c3 has to be counted from ÿ1 to 0. Using analytic continuation from the
traction-free condition along the crack faces results in the third part of the complex potential c��z� for
the ®lm. It is

c�3�z� � ÿ
X1

n�ÿ1
Cnm

nzÿn ÿ m=z� z

1ÿm=z2
X1

n�ÿ1
Cnnz

nÿ1: �A17�

Since the second part cannot totally satisfy the boundary conditions along the interface, both the second
and the third part are used to meet the boundary conditions. From the continuity of displacement and
traction along the interface, we have

X0
n�ÿ1

Aneiny �
X1

n�ÿ1
�a1 ÿ a2m

n �Cne
iny � a2�mÿ 1�e

ÿiy ÿ eiy

1ÿmei2y

X1
n�ÿ1

Cnnei
�1ÿn�y

� a2R
1ÿ 2m�m2

1ÿmei2y
�Teiy, �A18�

and

eiy �meÿiy

1ÿmei2y

X0
n�ÿ1

Annei
�1ÿn�y �

X0
n�ÿ1

Bne
ÿiny

� a3
X1

n�ÿ1
Cneiny � a4�mÿ 1�e

ÿiy ÿ eiy

1ÿmei2y

X1
n�ÿ1

Cnnei
�1ÿn�y ÿ a4

X1
n�ÿ1

Cnm
neiny: �A19�

Eqs. (A18) and (A19) have to be numerically solved to evaluate constants An, Bn and Cn:
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The purpose of conducting the above mentioned Cauchy integration is to achieve the analytical
solution of the complex potentials for the substrate as much as possible. Thus, the third parts, which
actually take ®nite terms for each series in the numerical evaluation, will make the smallest
contributions to the solution. To demonstrate this phenomena, stresses at the interface are calculated for
c = 19,900b and a = 20,000b under the assumption that both the ®lm and the substrate have the same
Poisson ratio of 0.3. Fig. A1 shows the contribution from the series to the stresses with or without
conducting the Cauchy integration, where s�3�11 , s

�3�
22 and s�3�12 are calculated using the above combined

Cauchy integration and the series expansion technique, and s�3s�11 , s�3s�22 and s�3s�12 are calculated without
conducting the Cauchy integration and assuming that F2�z� and C2�z� are the same as f�2�z� and C�2�z�:
As expected, no contributions come from the series when the ®lm and the substrate are identical, i.e.,
the ratio of shear moduli G equals unity, as shown in Fig. A1. For G � 1:5, the stress contributions of
the series parts without conducting the Cauchy integration are, respectively, js�3s�11 =s11j � 15%,
js�3s�22 =s22j � 25% and js�3s�12 =s12j � 20%, while conducting the Cauchy integration reduced the
corresponding stress contributions of the series parts to 15%, 20% and 5%, respectively. The reduction
is larger if the ®lm is softer than the substrate. Take G � 0:5 for an example. The stress contributions of
the series parts without conducting the Cauchy integration are, respectively, js�3s�11 =s11j � 42%,
js�3s�22 =s22j � 24% and js�3s�12 =s12j � 52%, while the corresponding stress contributions of the series parts
with conducting the Cauchy integration are 4%, 2% and 20%, respectively. It is clear that applying the
Cauchy integration before numerical evaluation reduces the contribution of the series and therefore
simpli®es the numerical computation.

Appendix B. Stress ®elds due to an edge dislocation in the ®lm

Using the same approach as used for the remote applied loads, we divide the complex potentials for
the ®lm into three parts and the complex potentials for the substrate into two parts. The ®rst parts of
the complex potentials for the ®lm are given below as the solution for an edge dislocation near a ®nite
length crack inside a homogeneous medium (Zhang and Li, 1991).

f�1�z� � gln�zÿ zd� ÿ gln

�
zÿ m

zd

�
ÿ �gm�zd ÿ zd�=R

zd

ÿ
zd ÿm=zd

�ÿ
zÿm=zd

� � C, �B1�

Fig. A1. Stress contributions of the series parts with or without the Cauchy integration.
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c�1�z� � �gln�zÿ zd� ÿ �gln

�
zÿ m

zd

�
ÿ gzd�zd ÿ zd�=R
�zd ÿm=zd��zÿ zd�

ÿ m=z� z

1ÿm=z2

"
g

zÿ zd

ÿ g

zÿm=zd

� �gm�zd ÿ zd�=R
zd

ÿ
zd ÿm=zd

�ÿ
zÿm=zd

� 2
#
� C, �B2�

where g � �m�b1 � ib2��=�i4p�1ÿ n��, and C is a constant that does not make any contributions to the
stress ®elds. Applying Cauchy integration to Eqs. (8) and (9), we have

1
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��
f1�t� � f2�t�

� dt
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, �B3�
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�
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1=t�mt

1ÿm=t2
�
f� 01 �t� � f� 02 �t� � f� 03 �t�

�
� c�1�t� � c�2�t� � c�3�t�

�
dt

tÿ z
: �B4�

In Eq. (B3), the integrand involving c�1�1z � contains a logarithmic term c�0�1z � � g ln zÿ1=zd

zÿzd=m
which is

singular in the substrate. We construct f��1�2p �z� � ÿa2
a1
c�0�1z � to cancel these terms, but from the traction-

free condition along the crack surface another logarithm term c��1�2p �z�Aÿ f�2p�mz � will concur and
c��1�2p �1z � is also singular in the substrate. Again, we construct f��2�2p �z� � ÿa2

a1
c��1�2p � 1z � to cancel c��1�2p �1z � and

so on. Thus, we have

f�2p�z� �
X1
n�1
� ÿ 1�nÿ1G n

1g ln
zÿ 1=

ÿ
mnÿ1zd

�
zÿ zd=mn

, �B5�

c�2p�z� �
X1
n�1
� ÿ 1�nG n

1 �gln
zÿmnzd

zÿmn�1=zd

, �B6�

where G1 � ÿa2=a1 and the absolute value of G1 is always less than unity. It is seen that c�2p�z� and
f�2p�z� are convergent and analytic in the substrate.

Similarly, f�1�1z � in Eq. (B4) contains a singular logarithm term f�0�1z � � �g ln zÿ1=zd

zÿzd=m
, so we construct

c��1�2s �z� � ÿa3
a4
f�0� 1z � to cancel it. In order to cancel the singular logarithm term f��1�2s � 1z � that occurred due

to the requirement of traction-free along crack surface, c��2�2s �z� is needed and so on. Thus, we have
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f�2s�z� �
X1
n�1
� ÿ 1�nG n

2g ln
zÿmnzd

zÿmn�1=zd

, �B7�

c�2s�z� �
X1
n�1
� ÿ 1�nÿ1G n

2 �g ln
zÿ 1=

ÿ
mnÿ1zd

�
zÿ zd=mn

, �B8�

where G2 � ÿa3=a4 and the absolute value of G2 is less than unit when G > 0:222: It is seen that f�2s�z�
and c�2s�z� are convergent and analytic in the substrate. Therefore, the second parts of the complex
potentials for the ®lm are obtained as

f�2�z� � f�2p�z� � f�2s�z�, �B9�

c�2�z� � c�2p�z� � c�2s�z�: �B10�

The third part of the complex potential f��z� for the ®lm is expressed as

f�3�z� �
X1

n�ÿ1
Hnz

n: �B11�

The third part of the complex potential c��z� for the ®lm is obtained from the traction-free condition
along the crack surface and given by

c�3�z� � ÿ
X1

n�ÿ1
Hnm

nzÿn ÿ m=z� z

1ÿm=z2
f� 02 �z� ÿ

m=z� z

1ÿm=z2
X1

n�ÿ1
Hnnz

nÿ1: �B12�

After de®ning all the terms on the right sides of Eqs. (B3) and (B4), we complete the integration and
substitute all the analytic and non-zero parts go into f1�z� or c1�z�, which are ®nally expressed,
respectively, as

f1�z� � a1
�
f�1�z� � f�2s�z�

�� a2c
�
2s�z�, �B13�

c1�z� � ÿ
z�mz3

z2 ÿm
f 01�z� � a3f

�
2p�z� � a4

"
z�mz3

z2 ÿm
f� 01 �z� � c�1�z� � c�2p�z�

#
: �B14�

The second parts of the complex potentials for the substrate may have the form:

f3�z� �
X0

n�ÿ1
Enz

n, c3�z� �
X0

n�ÿ1
Fnz

n: �B15�

The rest terms in Eqs. (B3) and (B4) constitute the following equations:
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Solving Eqs. (B16) and (B17) gives the constants, En, Fn and Hn:
From Eq. (11), the stress intensity factors induced by an edge dislocation in the ®lm can be

formulated as
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�B18�

It should be pointed out that constructing f�2�z� and c�2�z� to cancel the singular (in the in®nite medium)
logarithm terms can greatly facilitate the numerical evaluation of the constants En, Fn, and Hn:
Otherwise, derivative operations were applied on every term of Eqs. (B16) and (B17), which would make
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the numerical calculation of the constants, En, Fn, and Hn, much more di�cult or even impossible. It
turns out numerically that the series in (Eqs. (B5)±(B8)) converge so fast that 10 terms are enough for
f�2�z� and c�2�z� because both absolute values of G1 and G2 in f�2�z� and c�2�z� are smaller than unity.

Appendix C. E�ects of the ®lm thickness on the screw dislocation emission from a thin-®lm-covered mode
III crack

For a mode III thin-®lm-covered crack embedded, the stress intensity factor due to the applied load,
s132, is given by (Zhang and Qian, 1996a)

KIII � 2G
1� G�m�1ÿ G�K

0
III �C1�

where K 0
III � s132

�����
pc
p

: When the ®lm thickness is much smaller than the half-crack length, (C1) can be
reduced to

KIII � GK 0
III: �C2�

The error, ER, using the approximate equation of (C2) can be evaluated by

ER �

��������
2G

1� G�m�1ÿ G�K
0
III ÿ GK 0

III

2G
1� G�m�1ÿ G�K

0
III

�������� �
1

2
�1ÿm�j1ÿ Gj: �C3�

Eq. (C3) indicates that the error is small if the parameter, m, is close to unity. A soft ®lm makes the
ratio of shear moduli small and then the error small, while a hard ®lm may increase the error. For the
range 0.1±10 of the ratio of shear moduli, a 5% error requires the ®lm thickness to be ®ve order smaller
than the crack length.

Based on the Rice±Thomson model (Rice and Thomson, 1974), the nominally critical stress intensity
factor (NCSIF) for dislocation emission is given by

Fig. C1. The normalized nominally critical stress intensity factor as a function of the ®lmthickness for di�erent shear modulus

ratios.
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where b denotes the Burgers vector of the screw dislocation and remains the meaning hereafter in
Appendix C and in Figs. C1 and C2. Fig. C1 illustrates the variation of the normalized NCSIFs with
the ®lm thickness for G � 0:2, 0.5, 2.0 and 5.0. When the normalized NCSIF equals to unity, the ®lm
has no in¯uence on the dislocation emission. For a small ®lm thickness, e.g. a±c = 5b, as can be seen in
Fig. C1, the larger the shear modulus ratio (i.e. the harder the ®lm), the smaller the NCSIF. This means
that a harder ®lm makes the dislocation emission easier when the ®lm thickness is small, while a soft
®lm makes it more di�cult. For a large ®lm thickness, e.g. a±c = 50b, however, the conclusion is just
opposite to that for a small thickness. There exists a critical ®lm thickness at which the normalized
NCSIF equals one. When the ®lm thickness is less than the critical one, the dislocation emission is
easier for a hard ®lm �G > 1), but more di�cult for a soft ®lm �G < 1�: The opposite is also true when
the ®lm thickness is larger than the critical one. Fig. C2 shows the critical ®lm thickness as a function of
the shear modulus ratio for the half-crack lengths of c = 19,900b and c = 199,000b. When G � 1, there
is no solution for the critical thickness. As can be seen in Fig. C2, the critical thickness decreases with
increasing and the critical thickness for c = 199,000b is much larger than that for c = 19,900b at a
given shear modulus ratio. This means that if the ®lm is softer than the substrate and the crack is
longer, the critical thickness will be larger.
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